博士家园 首页 文库 查看内容

一些对数学领域及数学研究的个人看法

2013-9-11 23:06| 发布者: xiaohuhu| 查看: 2049| 评论: 0|原作者: wcboy|来自: 博士数学论坛原创

摘要: 现在的论坛质量比以前差了,大部分都是来解题问答的,而且层次较低。以前论坛中,Qullien很令人印象深刻,但愿他能在国外闯出一片天空。现在基础数学版代数数论子版中那几个讨论代数几何的还不错。不期望目前论坛出 ...

现在的论坛质量比以前差了,大部分都是来解题问答的,而且层次较低。以前论坛中,Qullien很令人印象深刻,但愿他能在国外闯出一片天空。现在基础数学版代数&数论子版中那几个讨论代数几何的还不错。不期望目前论坛出现很多高层次高手,高层次高手应该站在好课题上高观点讨论数学,出现这样的网友,看他们的言论非常过瘾。
以研究为目的的数学人,必须心中要有至少一个很棒的问题在手,而不是一味地读太多的书和深究一些价值不大的概念细节。

下面发一下自己对数学的人与事的个人看法。

怎样看待数学?不同的人看待数学的方式不同。如果想在数学上有所作为,必须理解数学的全局。但是数学内容如此众多,想全部细节都了解那是不可能的。目前数学深深地烙上格洛腾迪克印记,一个数学研究人员完全不了解现代代数几何内容是不可思议的。在数学观上,普通人,普通数学人,普通数学研究人,一般数学家,一流数学家,数学巨匠,他们的差别是巨大的。不同的数学观完全决定研究的起点和深度的巨大差异。

数学发展经历了古代初等数学、近代实用化数学,近现代公理化数学和目前的结构化数学。尽管数学风格的变迁,使看待数学的视野被极大拓宽和自由,但数学的基本本质仍是不变。数学的基本本质就是几何结构和代数结构的延续和互相渗透。

为什么一个有理想的数学研究者必须尽可能地了解数学的最新进展(懂英语的重要性,看英语原著比中译本更易懂),那是因为唯有如此,你才能了解目前数学有哪些新的几何结构和代数结构出现,重要性如何。如果你没有跟踪最新进展,要么你在重复别人的研究,要么你根本没有数学研究能力并且根本不理解数学在玩民科。追踪数学进展,并非要完全理解它的所有细节,其目的在于得到一个数学全局概观和下一步研究及学习路线。

就算你学完了某些(或即使所有(这没人可以做到))数学分支课本,那也只是变成一个普通的数学人,还没有进行研究的真正实力。只有当课本的内容转化为自己的知识时,你才能理解数学家的研究,进而获得一些基本研究能力,但要到一般数学家研究能力,你必须具有一定的数学全局观,理解一流数学家和数学巨匠的重要方法,并老老实实在他们限定的框架内解决一些必须克服的难题。而一流的数学家则必须完全理解数学巨匠的方法的优点和局限性,并提出自己的不同方法而克服或缩小数学巨匠的方法的局限性,并引领时代潮流,驾驭数学朝数学巨匠指点的高端行进。

数学巨匠,完全不同于一流数学大师,他们不是引领数学主流而是反潮流的,一旦成功,则改变数学研究的风向,影响巨大而深远,为历史的里程碑。

一个人的数学天赋结构(天赋的高低、品种和快慢)决定了他的研究能力、方向和风格,比如一个人解题速度很慢,不意味天赋低,只是以放松的风格来思考问题。尽管很多数学家说他们靠勤奋而成功,事实上他们的勤奋是建立在天赋之上才获得成功的。如果抽取天赋,即使再努力也不会成功。有的数学家代数或数字天赋强大,如伽罗华,阿贝尔,拉马努扬,高斯,托伦斯陶,有的几何洞察力深远,如黎曼、高斯、庞加莱和瑟斯顿。没有数学天赋的人,最好不要搞数学研究,否则成民科。天赋低的人数学竞争力弱,数学前途渺茫。为什么天赋重要,因为一个人不可能在懂所有数学专题细节后才开始进行研究,在绝大部分情况下,是边研究边学习,这需要天赋自动引导研究路线和判断研究对象和方法的价值。进入一个全新的内容完全取决天赋。大多数数学系的人的天赋都达不到研究级别。

一个人不懂stack、topos、etal cohomology、Godel不完全双 定理不要紧,带着自己的天赋和天赋积累的例子去看,天赋的高低决定懂的程度。最怕的是不知道这些概念和构造的存在,因为在研究的阶段,你很可能会用上,至少可以让你学会以较高的数学观点看自己的课题。

非常同意Alain Connes的话:在我看来,关于数学首先要知道,我们无法通过学习变为数学家,而是通过做数学才能称为数学家(我加一句,必须有天赋和基本基础的人)。

看万卷书破万个题的学习方式不是普适的,并且我认为是多为迂腐人所为,数学研究的起始只需要你的知识足够对付你所选课题的首期即可,后期必须在天赋的引导下进行研究式学习来补充不足,天赋的最主要作用在于最后产生新想法、技巧或构造去攻克课题。

搞研究的人必须要先选合适自己天赋的课题,不能等到大部分基础打好后才选。有课题在手,使你容易选方向深入,在辨别中深入理解所需数学内容,普通学习达不到这种效果,因为在思考课题时,有些内容可能比课本更深入了,变成自己的东西,课本学习就变得容易。选课题也是有天赋的。

数学研究的目的是什么?是解题。为什么不是乐趣和学习?一般的乐趣和学习是低层次行为,不属于研究目的。解题的关键是什么?是做出一个数学构造。这个构造可以是一个例子的构造(构造一个例子去完成一个否定或辅助支持论断,比如构造一个具体的同调群结构(解决一个拓扑分类问题)或一个特殊n体系统(解决天体力学中n体问题)),也可以是一般构造(比如椭圆函数和模形式的对应构造、亏格),还可以是基本构造(比如黎曼面、庞加莱的拓扑同调及同伦技术、汉密尔顿四元数构造)去开始一门学科分支。解题的乐趣是研究数学最大的享受。

非常同意Weil的话:要想掌握高深的知识,唯一的途径是阅读大师本人的著作。Abel也如此认为。

只有读大师的书,他们才告诉你数学的真相和他们方法的原始构思和起源。大师的数学思想的价值是非大师不能比的,而且从大师的论文中,你还可能读懂别人没读懂的隐藏思想。很明显,大师论文会明显或隐晦地回避他的方法的某些缺陷,这不是每个人都能读准的,有的被后人发现,有的没有,有的还被误读。比如在看代数几何以前,先读一下Dieudonne关于代数几何的发展史及关于数学结构分类的文章和书是非常有益的,这有助于消除对高度抽象的恐惧感和直接进入高度抽象后的抽象迷失症(不知道抽象的目的后的盲目抽象)。


尽管数学越来越抽象而高深,但是一个正常的数学研究者必须明白一个真相,数学的基本结构才是数学的核心,基本结构才是数学结构抽象赖以生存的基础。基本结构分几何和代数两部分。

现有的代数基本计算构造包括实数、复数、矩阵、汉密尔顿四元数、凯利八元数、格拉斯曼代数、模代数(mod(n)),包含所有基本运算及置换运算。几何基本结构包括解析几何结构和拓扑结构。所有数或函数域扩张是基本结构或混合结构的子部分或模拟。复数与实数结构有一个很大差别,数分解的唯一性和非唯一性,这直接通向环的理想结构,方程解的性质分析直接导致用矩阵结构处理不同群的计算,模代数导致循环群和环的概念扩张(周期封闭运算)。矩阵、汉密尔顿四元数、凯利八元数、格拉斯曼代数中非交换或非结合的主导地位。无穷结构(康托尔连续统)对代数结构的限制,导致连续计算结构和离散计算结构的差异。

任何代数结构都必须用来处理几何结构,否则没有意义。代数是工具,几何是灵魂。正是复数、矩阵、汉密尔顿四元数、凯利八元数、格拉斯曼代数在出现时没有对应的几何应用才导致争议或被忽视。几何结构用代数构造来处理才能到达深刻。

所有方程都是函数,函数基本可以和方程等价看待,如果在不违反康托尔连续统结构条件下。数论方程是离散几何形,分析方程是连续几何形。

基本计算构造中的一些基本计算形式必须被了解,比如分析中的泰勒形式,傅立叶级数,外微分形式,柯西复公式,调和级数。复数中的欧拉公式,复函数的自然级数e表示公式。

一些基本的思想,比如函数点化的函数(参数化)向量空间(甚至更抽象的等价类的moduli空间(概型))思想(一个高维图形或等价类可以看成抽象空间的一个点),比如函数的(系数或系数加部分变量)形成坐标(环域)和变量形成的向量基,基本的如整多项式和劳伦斯多项式,系数和变量可以不是实或复域,可以是矩阵或其他计算结构或混合结构。


格洛腾迪克的结构数学和希尔伯特的公理化数学看似相同,实则不同。公理化重在处理逻辑,而结构化重在处理构造。所以结构数学的计算技术得到强化。在数学中,个人以为构造比逻辑重要和有效得多。

抽象代数最有价值部分是群的计算,尤其有限单群,其次环域分解,即什么样扩张域能使某个特定环的分解变成唯一的。代数几何的最好部分就是上同调群的构造和计算。个人认为格氏代数几何虽然应用于拓扑和数论,但还是其数论的效用显著,几乎是为现代数论定身制作的。尽管同调群计算可以应用于拓扑,但对拓扑的深层次问题的解决帮助不大,主要是庞加莱的同调和同伦技术不能处理这些深层问题,对此庞加莱本人十分清楚。


当对比前辈时,当代数学家的影响和地位一般都会被当代数学人拔高。历史长河将会自动降低大多数人的影响力。所以你必须对数学家的成就给予较合理的评价,这样才能合理地理解数学思想和构造。一个盲从的人,其研究能力将被降低。就个人观点而言,能在庞加莱和希尔伯特后称为数学巨匠而无争议的人只有格洛腾迪克。格洛腾迪克第一次真正地总结了所有现存的代数与几何结构,实现了纵横联合。但不应过分拔高其影响。个人认为他还是不具备黎曼、庞加莱、伽罗华、高斯、阿贝尔、希尔伯特的影响,因为他们交给我们一些基本计算构造,而格洛腾迪克只是综合别人的构造。

几何的洞察力比代数天赋更宝贵,格洛腾迪克的几何洞察力比较弱,其代数几何更像是为从事数论的人打造的,适合算术几何化分析。这点可以从他的拓扑比较弱,抽象代数比较强可以看出,尽管他最初从研究拓扑起家。他的代数几何继承了经典抽象代数构造和拓扑技术构造,尤其同调技术(庞加莱的拓扑同调看来比希尔伯特的多项式同调更加深刻)。拓扑结构,格洛腾迪克的东西是罩不住的。康托尔连续统结构,格洛腾迪克的东西是罩不住的,但格洛腾迪克试图用(拓扑斯和范畴)罩住它,这很不现实。

康托尔连续统是整个无穷构造绝对核心。康托尔连续统的构造并非完美,哥德尔只是从逻辑层面而不是从计算构造层面解决康托尔无穷结构。任何对康托尔连续统结构的调整必将引起数学面貌的重大变化。如果从代数方面简单地处理康托尔连续统,就算以后被证明是对的,目前也是很难被认同的,就如格拉斯曼、汉密尔顿的境遇,康托尔本人当时境遇很惨。约翰康威在康托尔连续统上做了一些探索,但那只是游戏而已,非标准分析就只是一个拙劣的模仿产物。代数基本计算结构的新出现(发明),必须反应在几何结构重大自然发现中。格拉斯曼代数在多变量微积分张量结构中,汉密尔顿代数在麦克斯韦方程中的应用,才使这些构造有意义。本人认为康托尔连续统构造不是令人满意的。

当前格洛腾迪克的东西被人过分拔高了。它的局限性是很明显的,它更像一个数学的抽象合纵,不能用作提供解决一些关键数学结构的代数构造武器,尽管以后新构造会符合抽象代数的某些要求。现代几何尤其拓扑仍然笼罩在黎曼和庞加莱的影响下。

当代最有几何洞察力的人是瑟斯顿,但他那一套解决拓扑结构的方案不能令人满意。拓扑结构目前是最有研究价值的数学方向,但拓扑的研究现状令人失望,完全没有突破黎曼和庞加莱的阴影。庞加莱本人完全清楚他主要拓扑构造技术的局限性。一般(点集)拓扑学纯粹是从概念上附和康托尔连续统结构而创制的,没有多大意思。微分拓扑与点集拓扑和微分几何联系太紧,体现不出拓扑的基本思想,只有代数拓扑是希望所在,但现状(基于同调和同伦计算技术)完全令人失望。拓扑结构和康托尔连续统间关联有很多不清楚的地方。


想要进入高端数学研究,必须学会鉴赏主要数学家方案的优劣(就如每个建筑师做自己的方案一样,会有不同效果),而不是全盘学习并完全陷入他们的方案,而是要随时设想自己的方案与其比较。因为数学文献是海量的,即使高斯、庞加莱再世,他们也无法看完。这时研究者只能凭其天赋直觉来挑选。如果一个方案没用或用处不大,马上抛弃,不要浪费时间去学习。现在没用或意义不大的数学内容太多。即使是数学大师,他们的一些东西也是用处不大的。

有两种途径进入高端研究领域,在一个自己能深刻理解的数学基本构造基础上,寻找合适的现存顶级难题;其二是自己在思考数学基本构造的基础上,发现并合理提出新的顶级问题独自为自己拥有(在未决前不公布),正如庞加莱在为解决天体力学的n体问题时所为,庞加莱的拓扑遗产比黎曼要深刻多了,构造idea和技巧也多。

不是每个世界难题都有基础数学意义。费马大定理就是一个好题目,它见证并参与现代抽象代数结构(尤其环理想)和椭圆曲线模结构的全过程。而哥德巴赫猜想就不是一个令人满意的难题,四色问题也是如此。庞加莱球面猜想的重要性被高估,尽管有瑞奇流技术,但没有直接产生有效代数拓扑构造。一个难题的好坏在于研究它的过程中产生较大普适范围的基本构造。


拓扑不变量的观念太深地根植在数学中,已经成为一种负担。目前的拓扑不变量太粗糙,附加条件太多,稍精细的技术太难计算或实际不能计算。使用不同不变量,使同一个拓扑形与其他不同拓扑形的形成不同拓扑等价类,即两个拓扑形是否等价,取决于不变量技术的选取。

事实上,拓扑形之间有些等价性是相对的,条件变了,等价性也变,有些则很隐晦的。同时,与康托尔结构发生关系,显然造成拓扑结构的复杂性。维数有关键性作用,高维拓扑不能由低维拓扑直接而简单地推广,高维比低维深刻很多。

阿蒂亚和邱说数学家看见了这些几何形或拓扑形,但就是没有办法。几何洞察力,首先就是看见形的静态或动态特征,尤其对复杂图形和高维图形的想象力(不要老想着几个简单图形,它们体现不出很多拓扑深入后的细节),提取几何分解概念和结构,然后利用它们重新代数地构造所有拓扑形。

我并不认为当代这些名家真正看清了这些高维拓扑结构,如果看清了,必然在处理方式上有所反映。显然有一些重要概念没有得到完全理解。一些有效的拓扑分解概念和要素,被深深隐藏,需要强大的几何洞察力和数学全局观。需要突破的关卡和迷雾众多,而且像一个复杂的关系套,需要连续理解和挑战。同调和同伦技术不够深刻,不能全面反映所有拓扑形细节,它们不是一个理想的拓扑代数工具。拓扑基本计算构造应该不在目前所有代数基本构造范围内,需要新的代数计算工具。

数学的直觉往往是以具体而恰当的例子来转换的,恰当例子越多,通过直觉得到的构造被“证明”越“正确”。具体的例子比抽象的定理叙述更有说服力,更容易理解新构造。当你学习格洛腾迪克那样抽象的数学结构时,手头必须备有很多实例去对照。恰当地掌握了这些例子,也就恰当地掌握了数学。格洛腾迪克的抽象并非肤浅的抽象比如像非标准分析那种,而是基本结构为实例的深刻抽象。


请点击访问具体帖子。

 

 


路过

鸡蛋

握手
6

鲜花

刚表态过的朋友 (6 人)

关于我们|手机版|订阅|博士家园 ( 沪ICP备15045866号-1 )(沪公网安备沪公网安备 31011702001868号) 

GMT+8, 2024-5-4 00:00 , Processed in 0.136303 second(s), 25 queries .

Powered by Discuz! X3.4

© 2004-2024 博士家园

  • 获赠:邀请码

    博士投稿

    请发电子邮件

    电子邮件

    www@math.org.cn

    在线时间:9:00-16:00

  • 返回顶部