博士家园

查看: 331|回复: 3

[数学分析] 请教一个求极限的题目

[复制链接]
发表于 2017-10-12 00:23:46 | 显示全部楼层 |阅读模式
求极限
$$\lim_{n\to \infty}\left(1-\frac{1}{2}\right) \left(1-\frac{1}{2^2}\right) \cdots \left(1-\frac{1}{2^n}\right).$$
发表于 2017-10-12 11:44:13 | 显示全部楼层
乘$1+\frac{1}{2}$试试,常规极限
发表于 2017-10-12 15:33:16 | 显示全部楼层
此极限 $$\lim_{n\to \infty}\left(1-\frac{1}{2}\right) \left(1-\frac{1}{2^2}\right) \cdots \left(1-\frac{1}{2^n}\right)$$ 一般是出现在单调有界原理那一章节,利用单调有界原理很容易证明极限的存在性.  楼上所说的方法处理极限 $$\lim_{n\to \infty} (1+x)(1+x^2)(1+x^4)\cdots( 1+x^{2^{n-1}})$$ 是有效的!                              

发表于 2017-10-12 15:47:29 | 显示全部楼层
没有看清楚题目吗?

原题的极限没办法求。

关于我们|手机版|博士家园 ( 沪ICP备15045866号 )(沪公网安备沪公网安备 31011702001868号) 

GMT+8, 2018-7-19 13:34 , Processed in 1.187500 second(s), 15 queries , Gzip On.

Powered by Discuz! X3.2

© 2004-2018 Comsenz Inc.

快速回复 返回顶部 返回列表